Proof of an admissible Airy stress function

roldy
Messages
206
Reaction score
2

Homework Statement


Show that a stress function of the form \phi(r,\theta) = f(r)\cos(2\theta), where f(r) is a function of r only, satisfies the biharmonic equation and hence an admissible Airy stress function.


Homework Equations


<br /> g \equiv \nabla^2 \phi = \frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r}\frac{\partial \phi}{\partial r} + \frac{1}{r^2}\frac{\partial^2 \phi}{\partial \theta}<br />

<br /> \nabla^4 \phi = \nabla^2 g = \frac{\partial^2 g}{\partial r^2} + \frac{1}{r}\frac{\partial g}{\partial r} + \frac{1}{r^2}\frac{\partial^2 g}{\partial \theta}<br />


The Attempt at a Solution



Evaluate the harmonic equation:
<br /> g = \frac{\partial^2f(r)}{\partial r^2}\cos(2\theta) + \frac{1}{r}\frac{\partial f(r)}{\partial r}\cos(2\theta) -\frac{4}{r^2}f(r)\cos(2\theta)<br />

Evaluate the biharmonic equation:
I will split the equation into three parts to better show the different derivatives


<br /> \frac{\partial^2 g}{\partial r^2} = \left[\frac{\partial^4 f(r)}{\partial r^4} + \frac{\partial}{\partial r}\left(-\frac{1}{r^2}\frac{\partial f(r)}{\partial r} + \frac{1}{r}\frac{\partial^2f(r)}{\partial r^2} + \frac{8}{r^3}f(r) - \frac{4}{r^2}\frac{\partial f(r)}{\partial r}\right)\right]\cos(2\theta)<br />

<br /> =\left[\frac{\partial^4 f(r)}{\partial r^4} + \frac{1}{r^2}\frac{\partial f(r)}{\partial r} - \frac{1}{r}\frac{\partial^2 f(r)}{\partial r^2} - \frac{1}{r^2}\frac{\partial^2 f(r)}{\partial r^2} + \frac{1}{r}\frac{\partial^3 f(r)}{\partial r^3} - \frac{24}{r^4}f(r) + \frac{8}{r^3}\frac{\partial f(r)}{\partial r} + \frac{8}{r^3}\frac{\partial f(r)}{\partial r} - \frac{4}{r^2}\frac{^2 f(r)}{\partial r^2}\right]\cos(2\theta)<br />

<br /> \frac{1}{r}\frac{\partial g}{\partial r} = \left[\frac{1}{r}\left(\frac{\partial^3f(r)}{\partial r^3} - \frac{1}{r^2}\frac{\partial f(r)}{\partial r} + \frac{1}{r}\frac{\partial^2 f(r)}{\partial r^2} + \frac{8}{r^3}f(r) - \frac{4}{r^2}\frac{\partial f(r)}{\partial r}\right)\right]\cos(2\theta)<br />

<br /> =\left[\frac{1}{r}\frac{\partial^3 f(r)}{\partial r^3} - \frac{1}{r^2}\frac{\partial f(r)}{\partial r} + \frac{1}{r^2}\frac{\partial^2 f(r)}{\partial r^2} + \frac{8}{r^4}f(r) - \frac{4}{r^3}\frac{\partial f(r)}{\partial r}\right]\cos(2\theta)<br />

<br /> \frac{1}{r^2}\frac{\partial^2g}{\partial \theta^2} = \left[\frac{1}{r^2}\left(-4\frac{\partial^2f(r)}{\partial r^2} - \frac{4}{r}\frac{\partial f(r)}{\partial r} + \frac{16}{r^2}f(r)\right)\right]\cos(2\theta)<br />

<br /> = \left[\frac{-4}{r^2}\frac{\partial^2f(r)}{\partial r^2} - \frac{4}{r^3}\frac{\partial f(r)}{\partial r} + \frac{16}{r^4}f(r)\right]\cos(2\theta)<br />

Combining these terms:

<br /> \nabla^4 \phi = \left[\frac{\partial^4 f(r)}{\partial r^4} - \frac{1}{r}\frac{\partial^2 f(r)}{\partial r^2} + \frac{2}{r}\frac{\partial^3 f(r)}{\partial r^3} - \frac{8}{r^2}\frac{\partial^2 f(r)}{\partial r^2} + \frac{8}{r^3}\frac{\partial f(r)}{\partial r}\right]\cos(2\theta)<br />

The final form of the biharmonic equation above does not equal 0 (and for this problem it is supposed to). Is there anywhere I went wrong?
 
Physics news on Phys.org
roldy said:

Homework Statement


Show that a stress function of the form \phi(r,\theta) = f(r)\cos(2\theta), where f(r) is a function of r only, satisfies the biharmonic equation and hence an admissible Airy stress function.

[snip]

The final form of the biharmonic equation above does not equal 0

Why would you expect it to for arbitrary f? Clearly you must impose some additional condition.

Since \phi is separable we have
<br /> \nabla^2 \phi = \nabla^2(f(r) \cos 2\theta) = <br /> \left(\frac{1}r\frac{\partial}{\partial r} \left(r\frac{\partial f}{\partial r}\right) - 4\frac{f}{r^2}\right)\cos 2\theta = D_r^2(f)\cos 2 \theta
which is separable. Hence
<br /> \nabla^4 \phi = \nabla^2(\nabla^2 \phi) = \nabla^2(D_r^2(f) \cos 2\theta)<br /> = D_r^2(D_r^2 f) \cos 2\theta = D_r^4 (f) \cos 2\theta<br />
which again is separable, and it is this separability which allows us to impose a condition on f(r) so that \nabla^4 \phi = 0 for all r and \theta: we must have D_r^4 f = 0.

(I suspect your expression for D_r^4(f) is wrong, because it is dimensionally inconsistent: I expect terms of the form \frac 1{r^n} \frac{\partial^m}{\partial r^m} where n + m = 4.)
 
Last edited:
  • Like
Likes 1 person
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top