Proof of Equation: Need Assistance

  • Thread starter Thread starter trenekas
  • Start date Start date
  • Tags Tags
    Proof
trenekas
Messages
61
Reaction score
0
Hi there. I need some help to prove one equation.
03b74f4e27438cd10082a9bf1c0ce665304.jpg

There is my solution but something is wrong i think.
848f05e7a87670f1157de4db5af8d13d700.jpg

Any help would be appreciated :)
 
Physics news on Phys.org
You should be able to simplify each side to$$
\sum_{i=1}^n (X_iY_i) - n\bar X \bar Y$$
 
  • Like
Likes 1 person
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top