Proof of Uniform Convergence on I for $\sum_{n=1}^{\infty}f_n(x)$

  • Thread starter Thread starter burak100
  • Start date Start date
burak100
Messages
33
Reaction score
0

Homework Statement


I = [0, \frac{\Pi}{2}] is an interval, and \lbrace f_n(x)\rbrace_{n=1}^{\infty} is sequence of continuous function. \sum_{n=1}^{\infty}f_n(x) converges uniformly on the intervalI .
Show that holds

\int_{0}^{\frac{\Pi}{2}} \sum_{n=1}^{\infty} f_n(x)dx = \sum_{n=1}^{\infty} \int_{0}^{\frac{\Pi}{2}} f_n(x)dx

Homework Equations


The Attempt at a Solution


I`m not familiar that how we show this with using uniformly converge?
pls help, I will be appreciate...
 
Physics news on Phys.org
can we say that?

If \sum_{n=1}^{\infty}f_n(x) converges uniformly on I=[0, \frac{\Pi}{2}],
then we can write,

\int_0^{\frac{\Pi}{2}} \sum_{n=1}^{\infty}f_n(x)dx = \int_0^{\frac{\Pi}{2}} \lim_{\frac{\Pi}{2} \rightarrow \infty} S_n(x)dx = \lim_{\frac{\Pi}{2} \rightarrow \infty} \int_0^{\frac{\Pi}{2}} S_n(x)dx
~~~=\sum_{n=1}^{\infty} \int_0^{\frac{\Pi}{2}} f_n(x)dx

?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
8
Views
2K
Replies
5
Views
2K
Replies
3
Views
2K
Replies
18
Views
2K
Replies
3
Views
1K
Replies
6
Views
2K
Back
Top