Proof on Normal Subgroups and Cosets in Group Theory

frinny913
Messages
2
Reaction score
0
This is a proof I am struggling on ...

Let H be a subgroup of the permutation of n and let A equal the intersection of H and the alternating group of permutation n. Prove that if A is not equal to H, than A is a normal subgroup of H having index two in H.

My professor gave me the hint to begin by letting g be in H but not in A and then showing that gA and A are two cosets of A in H.
 
Physics news on Phys.org
The alternating group consists of all even permutations, right? If A is not equal to H, then H must contain an odd permutation, g, right? What you want to show is that half the elements of H are even permutations and half are odd. Hint: gH=H. That makes A a subgroup of H of index 2.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top