HotMintea
- 42
- 0
The attempt at a solution
<br /> \begin{equation*}<br /> \begin{split}<br /> \ -\ i\int\psi^* \frac{\partial{\psi}}{\partial x}= \\ -i(\psi^*\psi\ - \int\psi \frac{\partial\psi^*}{\partial x})\space\ (?)<br /> \end{split}<br /> \end{equation*}<br />
I thought \psi^*\psi\ = \ constant\neq\ 0. However, it vanishes in the correct proof.
<br /> \begin{equation*}<br /> \begin{split}<br /> \ -\ i\int\psi^* \frac{\partial{\psi}}{\partial x}= \\ -i(\psi^*\psi\ - \int\psi \frac{\partial\psi^*}{\partial x})\space\ (?)<br /> \end{split}<br /> \end{equation*}<br />
I thought \psi^*\psi\ = \ constant\neq\ 0. However, it vanishes in the correct proof.