I Proper Subsets of Ordinals .... .... Searcoid, Theorem 1.4.4 .

  • I
  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Subsets Theorem
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Micheal Searcoid's book: "Elements of Abstract Analysis" ... ...

I am currently focused on understanding Chapter 1: Sets ... and in particular Section 1.4 Ordinals ...

I need some help in fully understanding Theorem 1.4.4 ...

Theorem 1.4.4 reads as follows:
?temp_hash=4bda424fad298c1e9971999ab230fc84.png


In the above proof by Searcoid we read the following:

"... ... Now, for each ##\gamma \in \beta## , we have ##\gamma \in \alpha## by 1.4.2, and the minimality with respect to ##\in## of ##\beta## in ##\alpha \text{\\} x## ensures that ##\gamma \in x##. ... ...Ca someone please show formally and rigorously that the minimality with respect to ##\in## of ##\beta## in ##\alpha \text{\\} x## ensures that ##\gamma \in x##. ... ...

*** EDIT ***

Is the argument simply that since ##\beta## is the least element of ##\alpha \text{\\} x## ... then if ##\gamma \in \beta## ... then ##\gamma## cannot belong to ##\alpha \text{\\} x## ... otherwise ##\gamma## would be the least element ... and so ##\gamma## must belong to ##x## ...

*** *** ***Help will be appreciated ...

Peter

==========================================================================It may help Physics Forum readers of the above post to have access to the start of Searcoid's section on the ordinals (including Theorem 1.4.2 ... ) ... so I am providing the same ... as follows:
?temp_hash=4bda424fad298c1e9971999ab230fc84.png


It may also help Physics Forum readers to have access to Searcoid's definition of a well order ... so I am providing the text of Searcoid's Definition 1.3.10 ... as follows:

?temp_hash=4bda424fad298c1e9971999ab230fc84.png

?temp_hash=4bda424fad298c1e9971999ab230fc84.png

Hope that helps ...

Peter
 

Attachments

  • Searcoid - Theorem 1.4.4 ... ....png
    Searcoid - Theorem 1.4.4 ... ....png
    44.9 KB · Views: 562
  • Searcoid - 1 -  Start of section on Ordinals  ... ... PART 1 ... .....png
    Searcoid - 1 - Start of section on Ordinals ... ... PART 1 ... .....png
    31.4 KB · Views: 478
  • Searcoid - Definition 1.3.10 ... .....png
    Searcoid - Definition 1.3.10 ... .....png
    24.8 KB · Views: 481
  • Searcoid - 2 - Definition 1.3.10 ... .....PART 2 ... ....png
    Searcoid - 2 - Definition 1.3.10 ... .....PART 2 ... ....png
    25.6 KB · Views: 481
  • Searcoid - 2 - Definition 1.3.10 ... .....PART 2 ... ....png
    Searcoid - 2 - Definition 1.3.10 ... .....PART 2 ... ....png
    25.6 KB · Views: 386
  • ?temp_hash=4bda424fad298c1e9971999ab230fc84.png
    ?temp_hash=4bda424fad298c1e9971999ab230fc84.png
    44.9 KB · Views: 495
  • ?temp_hash=4bda424fad298c1e9971999ab230fc84.png
    ?temp_hash=4bda424fad298c1e9971999ab230fc84.png
    31.4 KB · Views: 460
  • ?temp_hash=4bda424fad298c1e9971999ab230fc84.png
    ?temp_hash=4bda424fad298c1e9971999ab230fc84.png
    24.8 KB · Views: 442
  • ?temp_hash=4bda424fad298c1e9971999ab230fc84.png
    ?temp_hash=4bda424fad298c1e9971999ab230fc84.png
    25.6 KB · Views: 478
Last edited:
Physics news on Phys.org
Math Amateur said:
Is the argument simply that since ##\beta## is the least element of ##\alpha \text{\\} x## ... then if ##\gamma \in \beta## ... then ##\gamma## cannot belong to ##\alpha \text{\\} x## ... otherwise ##\gamma## would be the least element ... and so ##\gamma## must belong to ##x## ...
Almost. Just replace '##\gamma## would be the least element' by '##\gamma## would be less than ##\beta##, so ##\beta## could not be the least element'
 
  • Like
Likes Math Amateur
Thanks Andrew ...

Appreciate your help ...

Peter
 
Back
Top