Undirrast
- 15
- 0
Homework Statement
If a, b and c are distinct positive numbers, show that
<br /> 2 (a^3 + b^3 + c^3) > a^2b + a^2c + b^2c + b^2a + c^2a + c^2b<br />
Homework Equations
The Attempt at a Solution
I have tried to expand from (a+b+c)^3 > 0, also tried (a+b)^3 + (b+c)^3 + (c+a)^3 > 0, and then \frac{a+b+c}{3} > \sqrt[3]{abc}. But with no avail. I guess I'm heading in the wrong direction?
Last edited: