Proving √2 is Irrational: A Brief Explanation

  • Thread starter Thread starter Jamin2112
  • Start date Start date
  • Tags Tags
    Irrational
Jamin2112
Messages
973
Reaction score
12

Homework Statement



As the title says.

Homework Equations



Rational number: a/b for some integers a, b
Even number: 2k for some integer k
Odd number: 2j+1 for some integer j

The Attempt at a Solution



Assume √2 is a rational number. Then it can be expressed a/b for some integers a and b. Reduced to it’s lowest form, a and b cannot both be even numbers.

√2 = a/b ----> √2b=a ----> 2b2=a2 ---->a2 is even ----> a is even ----> a=2k for some integer k ----> 2b2=(2k)2 ----> b2=2k2 ----> b is even: a contradiction because both a and b cannot be even.

Hence √2 is not a rational number.
 
Physics news on Phys.org
Your proof is correct!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top