Prove 2-Norm: A*A = A^2 Math Help

  • Thread starter Thread starter math8
  • Start date Start date
math8
Messages
143
Reaction score
0
How do you prove that

\left\|A^{*} A \right\|_{2}= \left\| A \right\|^{2}_{2} ?

I can prove that \left\|A^{*} A \right\|_{2} \leq \left\| A \right\|^{2}_{2}

but I am not sure how to do it for the other inequality.
 
Physics news on Phys.org


What is A and what is *? For example, it isn't true for 2x2 matrices.
 


I am sorry, let me specify: A \in \textbf{C}^{m\times n} and A^{*} is the conjugate transpose of A.

Is it true that \left\| A^{*}A \right\|_{2} \geq \left\| A \right\|^{2}_{2} ?

If yes, how do you prove this
 


math8 said:
How do you prove that

\left\|A^{*} A \right\|_{2}= \left\| A \right\|^{2}_{2} ?

I can prove that \left\|A^{*} A \right\|_{2} \leq \left\| A \right\|^{2}_{2}

but I am not sure how to do it for the other inequality.

Try it with

A = [[1,2],[3,4]]

Edit: Better yet, try the identity matrix.
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top