SithsNGiggles
- 183
- 0
Hey again! I've got another problem I'd like to check for adequacy. I'm pretty sure I've got all the cases covered, but I want to make sure the work here is satisfactory.
Prove that for all real numbers a and b,
||a| - |b|| \leq |a - b|.
The book I'm working with uses the following definition for absolute value:
|x| = \begin{cases} x, & \mbox{if } x \geq 0 \\ -x, & \mbox{if } x < 0 \end{cases}
And for later use:
|a| = \begin{cases} a, & \mbox{if } a \geq 0 \\ -a, & \mbox{if } a < 0 \end{cases}
|b| = \begin{cases} b, & \mbox{if } b \geq 0 \\ -b, & \mbox{if } b < 0 \end{cases}
|a-b| = \begin{cases} a-b, & \mbox{if } a-b \geq 0 \\ b-a, & \mbox{if } a-b < 0 \end{cases}
By definition,
||a|-|b|| = \begin{cases} |a|-|b|, & \mbox{if } |a|-|b| \geq 0, \mbox{ i.e. } |a|\geq|b| \\ -(|a|-|b|) = |b|-|a|, & \mbox{if } |a|-|b|< 0, \mbox{ i.e. } |a|<|b| \end{cases}
Suppose |a| = |b|. (I initially let a = b, but using |a|=|b| is more fitting, right?)
Then, ||a|-|b|| = ||a|-|a|| = |0| = 0. So, 0 \leq |a-b|.
If a=b, then a-b=0 and we have 0 \leq 0, which is true. If a \not= b, then |a-b|>0 and we have 0 \leq |a-b|, which is true.
For this reason, I modify the definition of ||a|-|b|| to be
||a|-|b|| = \begin{cases} |a|-|b|, & \mbox{if } |a|>|b| \\ |b|-|a|, & \mbox{if } |a|<|b| \end{cases}
(I hope there aren't any problems with this step. I thought it would simplify the later sub-cases.)
Case 1: Suppose |a|>|b|.
Case 2: Suppose |a|<|b|.
Thus, for all real numbers a and b,
||a| - |b|| \leq |a - b|.
(I say the sub-cases under case 2 are identical to those in case 1 since they don't utilize the modified definition.)
If I'm missing anything important, please do tell! Thanks
Homework Statement
Prove that for all real numbers a and b,
||a| - |b|| \leq |a - b|.
Homework Equations
The book I'm working with uses the following definition for absolute value:
|x| = \begin{cases} x, & \mbox{if } x \geq 0 \\ -x, & \mbox{if } x < 0 \end{cases}
And for later use:
|a| = \begin{cases} a, & \mbox{if } a \geq 0 \\ -a, & \mbox{if } a < 0 \end{cases}
|b| = \begin{cases} b, & \mbox{if } b \geq 0 \\ -b, & \mbox{if } b < 0 \end{cases}
|a-b| = \begin{cases} a-b, & \mbox{if } a-b \geq 0 \\ b-a, & \mbox{if } a-b < 0 \end{cases}
The Attempt at a Solution
By definition,
||a|-|b|| = \begin{cases} |a|-|b|, & \mbox{if } |a|-|b| \geq 0, \mbox{ i.e. } |a|\geq|b| \\ -(|a|-|b|) = |b|-|a|, & \mbox{if } |a|-|b|< 0, \mbox{ i.e. } |a|<|b| \end{cases}
Suppose |a| = |b|. (I initially let a = b, but using |a|=|b| is more fitting, right?)
Then, ||a|-|b|| = ||a|-|a|| = |0| = 0. So, 0 \leq |a-b|.
If a=b, then a-b=0 and we have 0 \leq 0, which is true. If a \not= b, then |a-b|>0 and we have 0 \leq |a-b|, which is true.
For this reason, I modify the definition of ||a|-|b|| to be
||a|-|b|| = \begin{cases} |a|-|b|, & \mbox{if } |a|>|b| \\ |b|-|a|, & \mbox{if } |a|<|b| \end{cases}
(I hope there aren't any problems with this step. I thought it would simplify the later sub-cases.)
Case 1: Suppose |a|>|b|.
Case 1(a): Suppose a,b \geq 0. Then |a|=a and |b|=b.
We thus have ||a|-|b|| = |a-b| \leq |a-b|, which is true.
Case 1(b): Suppose a,b<0. Then |a|=-a and |b|=-b.
(|a|>|b|) \; \Rightarrow \; (-a>-b) \; \Rightarrow \; (a-b<0) \; \Rightarrow \; (|a-b|=b-a).
We have ||a|-|b|| = |a|-|b| = -a-(-b) = b-a, and so we have b-a \leq |a-b| = b-a, which is true.
Case 1(c): Suppose a\geq 0, b<0. Then |a|=a and |b|=-b.
(a\geq 0, b<0) \; \Rightarrow \; (a>b) \; \Rightarrow \; (a-b>0) \; \Rightarrow \; (|a-b|= a-b = a+(-b) = |a|+|b|).
We have ||a|-|b|| = |a-(-b)| = |a+b|, which means we have
|a+b| \leq |a|+|b|, which is true (by the Triangle Inequality Theorem).
Case 1(d): Suppose a<0, b\geq 0. Then |a|=-a and |b|=b.
(a<0, b\geq 0) \; \Rightarrow \; (b>a) \; \Rightarrow \; (a-b<0) \; \Rightarrow \; (|a-b|= b-a = b+(-a) = |a|+|b|).
We have ||a|-|b|| = |-a-b| = |-(a+b)| = |a+b|, and so we have
|a+b| \leq |a|+|b|, as in Case 1(c).
We thus have ||a|-|b|| = |a-b| \leq |a-b|, which is true.
Case 1(b): Suppose a,b<0. Then |a|=-a and |b|=-b.
(|a|>|b|) \; \Rightarrow \; (-a>-b) \; \Rightarrow \; (a-b<0) \; \Rightarrow \; (|a-b|=b-a).
We have ||a|-|b|| = |a|-|b| = -a-(-b) = b-a, and so we have b-a \leq |a-b| = b-a, which is true.
Case 1(c): Suppose a\geq 0, b<0. Then |a|=a and |b|=-b.
(a\geq 0, b<0) \; \Rightarrow \; (a>b) \; \Rightarrow \; (a-b>0) \; \Rightarrow \; (|a-b|= a-b = a+(-b) = |a|+|b|).
We have ||a|-|b|| = |a-(-b)| = |a+b|, which means we have
|a+b| \leq |a|+|b|, which is true (by the Triangle Inequality Theorem).
Case 1(d): Suppose a<0, b\geq 0. Then |a|=-a and |b|=b.
(a<0, b\geq 0) \; \Rightarrow \; (b>a) \; \Rightarrow \; (a-b<0) \; \Rightarrow \; (|a-b|= b-a = b+(-a) = |a|+|b|).
We have ||a|-|b|| = |-a-b| = |-(a+b)| = |a+b|, and so we have
|a+b| \leq |a|+|b|, as in Case 1(c).
Case 2: Suppose |a|<|b|.
Case 2(a): Suppose a,b \geq 0. This case is identical to Case 1(a).
Case 2(b): Suppose a,b<0. Then |a|=-a and |b|=-b.
(|a|<|b|) \; \Rightarrow \; (-a<-b) \; \Rightarrow \; (a>b) \; \Rightarrow \; (a-b>0) \; \Rightarrow \; (|a-b|=a-b).
We also have ||a|-|b|| = |b|-|a| = -b-(-a) = a-b, and so we have
a-b \leq |a-b| = a-b, which is true.
Case 2(c): Suppose a\geq 0, b<0. This case is identical to Case 1(c).
Case 2(d): Suppose a<0, b \geq 0. This case is identical to Case 1(d).
Case 2(b): Suppose a,b<0. Then |a|=-a and |b|=-b.
(|a|<|b|) \; \Rightarrow \; (-a<-b) \; \Rightarrow \; (a>b) \; \Rightarrow \; (a-b>0) \; \Rightarrow \; (|a-b|=a-b).
We also have ||a|-|b|| = |b|-|a| = -b-(-a) = a-b, and so we have
a-b \leq |a-b| = a-b, which is true.
Case 2(c): Suppose a\geq 0, b<0. This case is identical to Case 1(c).
Case 2(d): Suppose a<0, b \geq 0. This case is identical to Case 1(d).
Thus, for all real numbers a and b,
||a| - |b|| \leq |a - b|.
(I say the sub-cases under case 2 are identical to those in case 1 since they don't utilize the modified definition.)
If I'm missing anything important, please do tell! Thanks