Prove a given transformation exists or not: T: R^4 -> R^5

  • Thread starter Thread starter daniel_i_l
  • Start date Start date
  • Tags Tags
    Transformation
daniel_i_l
Gold Member
Messages
864
Reaction score
0

Homework Statement


Prove if the following transformation exists or not: T: R^4 -> R^5
where: KerT=Sp{(0,1,1,0),(1,1,0,0)} , ImT=Sp{2,3,4,0,0),(1,1,0,0,0),(0,1,1,0,0)}


Homework Equations


T:V->W
dimImT + dimKerT = dimV


The Attempt at a Solution


I think that the answer is no because dimKerT=2 , dimImT=3 but 2+3 =/= 4.
Is that right? Am I missing something?
Thanks.
 
Physics news on Phys.org
Yes, it's right. No, you aren't missing anything.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top