Proving Abelian Group Structure in C^A

  • Thread starter Thread starter stripes
  • Start date Start date
  • Tags Tags
    Group
stripes
Messages
262
Reaction score
0

Homework Statement



attachment.php?attachmentid=57698&stc=1&d=1365589730.jpg



Homework Equations





The Attempt at a Solution



For the first question, since [f(a)][g(a)] is in C, can I just say that since C is a ring, it is an abelian group, then the four axioms are proven? Then just show closure? Probably not I'm guessing. Associativity of multiplying functions seems so fundamental to me that I really don't know what to do...

For the second question, shall I start by using composition of functions and then the properties of composition of a function and its inverse, and then go on about the identity function?
 

Attachments

  • Capture.JPG
    Capture.JPG
    40.3 KB · Views: 488
  • Capture2.JPG
    Capture2.JPG
    10.3 KB · Views: 443
Last edited by a moderator:
Physics news on Phys.org
I'd say question one is asking you to flesh out the group structure.

1. What's the identity element? (make sure it's a member of C^A).

2. For each element f, what's the inverse element? (make sure it's well defined
- namely, why can you find f^-1 for each f? )

Closure is trivial but should be mentioned, namely why is (fg) a well
defined member of C^A when f and g are?

Associativity (and Abelian-ness) of course follow from the properties of C,
but you should have a proof showing f(gh) =(fg)h.

For question 2. I don't know what A-hat is. What do you know
about group homomorphisms at this point?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top