eyehategod
- 82
- 0
Prove if A is orthogonal matrix, then |A|=+-1
A^{-1}=A^{T}
AA^{-1}=AA^{T}
I=AA^{T}
|I|=|AA^{T}|
1=|A|*|A^{T}|//getting to the next step is where i get confused. Why is |A|=|A^{T}|
1=|A|*|A|
1=|A|^{2}
+-1=|A|
A^{-1}=A^{T}
AA^{-1}=AA^{T}
I=AA^{T}
|I|=|AA^{T}|
1=|A|*|A^{T}|//getting to the next step is where i get confused. Why is |A|=|A^{T}|
1=|A|*|A|
1=|A|^{2}
+-1=|A|
Last edited: