MHB Prove $\angle QBR=\angle RSQ$: Geometry Challenge

AI Thread Summary
In the geometry challenge, the problem involves proving that angles QBR and RSQ are equal in a convex quadrilateral PQRS, given specific conditions involving the intersection point A of the diagonals PR and QS. The angle bisector of angle PRS intersects line QP at point B, and a condition involving products of segments is provided: AP·AR + AP·RS = AQ·AS. The discussion highlights the application of the "Power of a Point Theorem" as a useful tool in the proof. Participants share insights and diagrams to clarify the solution process. The thread emphasizes collaborative problem-solving in geometry.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $A$ be the intersection point of the diagonals $PR$ and $QS$ of a convex quadrilateral $PQRS$. The bisector of angle $PRS$ hits the line $QP$ at $B$. If $AP\cdot AR+AP\cdot RS=AQ\cdot AS$, prove that $\angle QBR=\angle RSQ$.
 
Mathematics news on Phys.org
anemone said:
Let $A$ be the intersection point of the diagonals $PR$ and $QS$ of a convex quadrilateral $PQRS$. The bisector of angle $PRS$ hits the line $QP$ at $B$. If $AP\cdot AR+AP\cdot RS=AQ\cdot AS$, prove that $\angle QBR=\angle RSQ$.
 

Attachments

  • Geometry Challenge.jpg
    Geometry Challenge.jpg
    38.3 KB · Views: 110
Thanks for participating, Albert and thanks for your diagram and solution!

Here is a quite similar approach that I saw that I wanted to share with the community of MHB, since it uses one theorem that I have never heard before, that is, the "Power of a Point Theorem", for those who have never heard of this theorem before, I hope you will like it "at first sight" as much as I do:
View attachment 2885

Let $N$ be the intersection of lines $BR$ and $QS$. By the angle bisector theorem applied to triangle $ARS$, we have $\dfrac{RS}{SN}=\dfrac{AR}{AN}\,\,\rightarrow\,\,RS=\dfrac{AR\cdot SN}{AN}$.

Substitute this into the given relation, we then have

$\begin{align*}AQ\cdot RS&=AP\cdot AR+AP\cdot RS\\&=AP\cdot AR+\dfrac{AP\cdot AR\cdot SN}{AN}\\&=AP\cdot AR\left(1+\dfrac{SN}{AN}\right)\\&=AP\cdot AR \cdot \dfrac{AS}{AN}\end{align*}$

Simplify this gives $AQ\cdot AN=AP\cdot AR$.

Because $A$ lies inside quadrilateral $PQRN$, the Power of a Point theorem implies $P,\,Q,\,R,\,N$ are concyclic. Hence $\alpha=\angle BQS=\angle PQN\stackrel{\small \text{angle subtended on the same arc}}{=}\angle PRN\stackrel{\small \text{angle bisector theorem}}{=}\angle NRS=\angle BRS$. This implies that $B,\,Q,\,R,\,S$ are concyclic. Therefore $\angle QBR=\angle RSQ$.
 

Attachments

  • geometry challenge.JPG
    geometry challenge.JPG
    13.3 KB · Views: 90
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top