vvvidenov
- 23
- 0
Homework Statement
Prove by induction that
n!> 2^n for n\geq4
Homework Equations
solved example:
P(n): 2^n>1+3n let n\geq4
(base): n=4 2^4=16 > 13=1+12=1+(3)(4)
(implication): if for n=k: P(k): 2^k>1+3k, for k\geq4
consider for n=(k+1):
2^(k+1)=2^k*2^1=2^k(1+1)=2^k+2^k >(1+3k) + (1+3k) for k\geq4
>1+3k+3k
\geq1+3k+12 > 1+3k+3
= 1+3(k+1)
so P(k) => P(k+1)
The Attempt at a Solution
(Base) n=k
P(k): k!>2^k
(Implication) show P(k)=> P(k+1)
Consider: n=k+1
(k+1)! > 2^(k+1)
(k+1)! = (k+1)k!> (k+1)*2^k
Please help if you can. I am confused. Thanx.