Prove Polynomials of Degree 1, 2 & 4 Have Roots in Z_2[x]/(x^4+x+1)

  • Thread starter Thread starter whodoo
  • Start date Start date
  • Tags Tags
    Polynomial Roots
whodoo
Messages
4
Reaction score
0
I want to show that every polynomial of degree 1, 2 and 4 in Z_2[x] has a root in Z_2[x]/(x^4+x+1). Any ideas?

Ps. How can I use latex commands in my posts?
 
Physics news on Phys.org
You can just do it by exhaustion. There are very few cases to think about (and if you have to start thinking about the case deg=1 then you're missing something).

LaTeX is explained in the introduction to LaTeX thread (probably in physics): just look around.
 
Okey, something like this?
The case deg 1 is obvious. The case 2 is obvious except for the irreducible x^2+x+1, where I can find a solution. Degree 4 is obvious except for the irreducible cases which I can try?

Im not really satsified with this solution.
 
Why not? Have you actually tried to look at the irreducible casees? If you do you might figure out what a general condition would be, and why the degs 1,2,4 polys all satisfyit (and presumably why there is a deg 3 poly that doesn't). You won't figure out a general criterion just by pulling it out of thin air. You look at cases where it is true, where it isn't and figure out what quantifies the difference. That's how you do maths.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top