MHB Prove: Q(ζp)=Q(ζip) | Cyclotomic Polynomials

  • Thread starter Thread starter mathjam0990
  • Start date Start date
  • Tags Tags
    Polynomials
Click For Summary
The discussion focuses on proving that Q(ζp) = Q(ζip) for ζp = e^(2πi/p) and an integer i not divisible by p. Participants emphasize the importance of showing both inclusions, specifically that ζp belongs to Q(ζip). The relationship between the powers of ζp and the coprimality of i and p is crucial for establishing this proof. The cyclic nature of the p-th roots of unity and their representation as a group under complex multiplication is also highlighted. The conversation suggests using group theory and Euclid's algorithm to find the necessary integers to demonstrate the equality.
mathjam0990
Messages
28
Reaction score
0
Let ζp be e2πi/p. For an integer i, such that p does not divide i, prove Q(ζp) = Q(ζip ).

I think this has something to do with both exponents of ζp (1 and i) being coprime to p, but I am not sure at all how to show the equality. If anyone could please help with an explanation, that would be great. Thank you.
 
Physics news on Phys.org
mathjam0990 said:
Let ζp be e2πi/p. For an integer i, such that p does not divide i, prove Q(ζp) = Q(ζip ).

I think this has something to do with both exponents of ζp (1 and i) being coprime to p, but I am not sure at all how to show the equality. If anyone could please help with an explanation, that would be great. Thank you.
Some caution is needed here, because $i$ is doing double duty, as an exponent and as the square root of $-1$. Just don't be tempted to write $\zeta_p^i$ as $(e^{2\pi i/p})^i.$

It should be clear that $\mathbb{Q}(\zeta_p^i) \subseteq \mathbb{Q}(\zeta_p)$ (because $\zeta_p^i \in \mathbb{Q}(\zeta_p)$). To prove the reverse inclusion you need to show that $\zeta_p \in \mathbb{Q}(\zeta_p^i)$. This will follow if you can show that $\zeta_p$ is a power of $\zeta_p^i$. That is where $i$ and $p$ being coprime will come in.
 
Opalg said:
To prove the reverse inclusion you need to show that $\zeta_p \in \mathbb{Q}(\zeta_p^i)$. This will follow if you can show that $\zeta_p$ is a power of $\zeta_p^i$. That is where $i$ and $p$ being coprime will come in.

Thank you for your response. I apologize, I should have mentioned that I knew the proof would be to show each is contained in the other. But I have no clue how to show $\zeta_p \in \mathbb{Q}(\zeta_p^i)$. Could you please explain how I would do that and I can respond via "reply with quote" if I happen to get lost? Thank you.
 
The $p$-th roots of unity form a cyclic group of order $p$, under complex multiplication. The elements are, from your definition of $\zeta_p$:

$\{(\zeta_p)^k: k = 0,1,2,\dots,p-1\}$ (so $\zeta_p$ is a generator). The link between "$p$-th roots of unity" and an abstract cyclic group of order $p$ (or to be more specific: $\Bbb Z/p\Bbb Z$) is provided by the complex exponential (which lies beneath DeMoivre's formula, as well).

A (semi-) elementary result of group theory is that for a cyclic group $\langle a\rangle$, of order $n$, the order of $a^k$ is:

$\dfrac{n}{\gcd(k,n)}$

In particular, for $n = p$, if $\gcd(k,p) = 1$, then $a^k$ has order $p$ (I am using $k$ instead of your $i$ for the very reasons Opalg outlined in his first post).
 
A possibly more simple-minded approach is to say that we want to find $r$ such that $(\zeta_p^k)^r = \zeta_p$. But $\zeta_p^k$ is a $p$th root of unity, so $(\zeta_p^p)^s = 1$ (for any integer $s$).

Therefore it would be good to find integers $r,s$ such that $kr = ps+1$, because then $(\zeta_p^k)^r = (\zeta_p^p)^s(\zeta_p)^1 = \zeta_p$. That ought to point you towards ideas connected with Euclid's algorithm.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
48
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
16
Views
5K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K