tainted
- 28
- 0
Homework Statement
Prove the following formula
<br /> \int_{-\pi}^{\pi} \sin(mx)\cos(nx)\,dx = 0\\<br /> (m, n = \pm 1, \pm 2, \pm 3, ...)<br />
Homework Equations
<br /> \sin(A)\cos(B) = \frac{1}{2}[\sin(A-B)+\sin(A+B)]<br />
The Attempt at a Solution
<br /> \int_{-\pi}^{\pi} \sin(mx)\cos(nx)\,dx\\<br /> \int_{-\pi}^{\pi} \sin(mx-nx)+\sin(mx+nx)\,dx\\<br /> \int_{-\pi}^{\pi} \sin((m-n)x)+\sin((m+n)x)\,dx<br />
Edit
<br /> \int_{-\pi}^{\pi} \sin((m-n)x)\,dx + \int_{-\pi}^{\pi} \sin((m+n)x)\,dx<br />
the function, sine of any constant times x, is an odd function, therefore when it is integraded from -a to a, its value is 0.
Therefore, we get
<br /> \int_{-\pi}^{\pi} \sin((m-n)x)\,dx + \int_{-\pi}^{\pi} \sin((m+n)x)\,dx = 0 + 0 = 0<br />
Would that be sufficient in the proof?
Thanks guys!
Last edited: