Prove Summation Property: \displaystyle\sum\limits_{i=1}^n aij

  • Thread starter Thread starter -Dragoon-
  • Start date Start date
  • Tags Tags
    Proof Summation
AI Thread Summary
The discussion focuses on proving the summation property that states the equality of two double summations. Participants analyze the expression and provide a breakdown of the steps involved in the proof. One contributor suggests that a more rigorous approach is needed, recommending the use of induction and avoiding ellipses in notation for clarity. Additionally, tips on formatting mathematical expressions using tex tags are shared to enhance readability. Overall, the conversation emphasizes the importance of thoroughness in mathematical proofs and clear notation.
-Dragoon-
Messages
308
Reaction score
7

Homework Statement


Show that the summation notation satisfies the following property:
\displaystyle\sum\limits_{i=1}^n(\displaystyle\sum\limits_{j=1}^m aij) = \displaystyle\sum\limits_{j=1}^m(\displaystyle\sum\limits_{i=1}^n aij)

Homework Equations


N/A


The Attempt at a Solution


\displaystyle\sum\limits_{i=1}^n(\displaystyle\sum\limits_{j=1}^m aij) = \displaystyle\sum\limits_{i=1}^n ai_{1} + \displaystyle\sum\limits_{i=1}^n ai_{2} + ... +\displaystyle\sum\limits_{i=1}^n ai_{n} = \displaystyle\sum\limits_{j=1}^m(\displaystyle\sum\limits_{i=1}^n aij)

Have I proven this sufficiently or have I skipped a step? If I skipped a step, which one was it? Thanks in advance.
 
Physics news on Phys.org

Homework Statement


Show that the summation notation satisfies the following property: \sum_{i=1}^n\bigg(\sum_{j=1}^m a_{ij}\bigg) = \sum_{j=1}^m\bigg(\sum_{i=1}^n a_{ij}\bigg)

Homework Equations


N/A

The Attempt at a Solution


\sum_{i=1}^n\bigg(\sum_{j=1}^m a_{ij}\bigg) = \sum_{i=1}^n a_{i1} + \sum\limits_{i=1}^n a_{i2} + \cdots +\sum_{i=1}^n a_{im} = \sum_{j=1}^m\bigg(\sum_{i=1}^n a_{ij}\bigg)
I would at least have written out the step \sum_{i=1}^n(a_{i1}+\cdots+a_{im})=\sum_{i=1}^n a_{i1} + \sum\limits_{i=1}^n a_{i2} + \cdots +\sum_{i=1}^n a_{im}. If you want to do these things rigorously, you need to avoid the ... notation and use induction.

If you use tex tags instead of itex, you don't need to type "displaystyle" all the time. (Use tex tags only when you want the math to appear on a separate line). Hit the quote button to see how I prefer to type the math above.
 
Fredrik said:
I would at least have written out the step \sum_{i=1}^n(a_{i1}+\cdots+a_{im})=\sum_{i=1}^n a_{i1} + \sum\limits_{i=1}^n a_{i2} + \cdots +\sum_{i=1}^n a_{im}. If you want to do these things rigorously, you need to avoid the ... notation and use induction.

If you use tex tags instead of itex, you don't need to type "displaystyle" all the time. (Use tex tags only when you want the math to appear on a separate line). Hit the quote button to see how I prefer to type the math above.
Thank you for the help and the tex tips, Fredrik.
 
I picked up this problem from the Schaum's series book titled "College Mathematics" by Ayres/Schmidt. It is a solved problem in the book. But what surprised me was that the solution to this problem was given in one line without any explanation. I could, therefore, not understand how the given one-line solution was reached. The one-line solution in the book says: The equation is ##x \cos{\omega} +y \sin{\omega} - 5 = 0##, ##\omega## being the parameter. From my side, the only thing I could...
Back
Top