Prove that the dual norm is in fact a norm

  • Thread starter Thread starter Dafe
  • Start date Start date
  • Tags Tags
    Dual Norm
Dafe
Messages
144
Reaction score
0

Homework Statement


Let ||\cdot || denote any norm on \mathbb{C}^m. The corresponding dual norm ||\cdot ||' is defined by the formula ||x||^=sup_{||y||=1}|y^*x|.
Prove that ||\cdot ||' is a norm.

Homework Equations


I think the Hölder inequality is relevant: |x^*y|\leq ||x||_p ||y||_q, 1/p+1/q=1 with 1\leq p, q\leq\infty

The Attempt at a Solution


Since a norm is a function satisfying three properties, I need to show that they hold.

(1) ||x||'=0 if and only if x=0.
(2) ||\alpha x||'=|\alpha| ||x||^.
(3) ||x+z||'\leq ||x||^+||z||^.

I manage to do (1) and (2) just fine, but the triangle inequality (3) is giving me problems.

I use the Hölder inequality to get the following:

||x+z||'=sup_{||y||=1}|y^*(x+z)|\leq ||y|| ||x+z||=||x+z||

||x||'=sup_{||y||=1}|y^*x|\leq ||y|| ||x|| =||x||

||z||'=sup_{||y||=1}|y^*z|\leq ||y|| ||z|| =||z||

(1) ||x||'\leq ||x||
(2) ||z||'\leq ||z||
(3) ||x||'+||z||' \leq ||x||+||z||

I also know that
(4) ||x+z|| \leq ||x||+||z||

I am unable to show that ||x+z||\leq ||x||'+||z||' which I think I must if I am to prove the triangle inequality.

Any help is appreciated.
 
Physics news on Phys.org
||x+z||'=sup_{||y||=1} |y^*(x+z)| = sup_{||y||=1} | y^*x + y^*z | \leq sup_{||y||=1} | y^*x| + sup_{||y||=1} |y^*z | = ||x||' + ||z||'

The supremum-norm is a norm.
 
Last edited:
Ah, didn't think of it that way. Thank you very much.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top