Prove that the set T:={x∈Rn:Ax∈S} is a subspace of Rn.

  • Thread starter Thread starter squenshl
  • Start date Start date
  • Tags Tags
    Set Subspace
Click For Summary
SUMMARY

The discussion centers on proving that the set T := {x ∈ R^n : Ax ∈ S} is a subspace of R^n, where S is a subspace of R^m and A is an m × n matrix. The three conditions for a subspace are established: the zero vector is included in T, the sum of any two vectors in T remains in T, and the scalar multiplication of a vector in T also results in a vector in T. The proof emphasizes the necessity of correctly identifying the relationships between the sets T and S, particularly in the context of linear transformations.

PREREQUISITES
  • Understanding of vector spaces and subspaces
  • Familiarity with linear transformations and matrix operations
  • Knowledge of the properties of vector addition and scalar multiplication
  • Basic concepts of abstract algebra, particularly regarding groups and modules
NEXT STEPS
  • Study the properties of linear transformations, specifically the preimage of subspaces
  • Explore the relationship between vector spaces and their subspaces in detail
  • Investigate the application of these concepts in abstract algebra, focusing on modules and groups
  • Review proofs related to subspaces in linear algebra for deeper understanding
USEFUL FOR

Students and professionals in mathematics, particularly those studying linear algebra and abstract algebra, as well as educators looking to clarify concepts related to vector spaces and subspaces.

squenshl
Messages
468
Reaction score
4
Homework Statement
1. Let ##S## be a subspace of ##\mathbb{R}^m## and let ##A## be a ##m\times n## matrix.
Prove that the set ##T:= \left\{\mathbf{x}\in \mathbb{R}^n:A\mathbf{x}\in S\right\}## is a subspace of ##\mathbb{R}^n##.
Relevant Equations
None
1. Let's show the three conditions for a subspace are satisfied:
Since ##\mathbf{0}\in \mathbb{R}^n##, ##A\times \mathbf{0} = \mathbf{0}\in S##.
Suppose ##x_1, x_2\in \mathbb{R}^n##, then ##A(x_1+x_2) = A(x_1)+A(x_2)\in S##.
Suppose ##x\in S## and ##\lambda\in \mathbb{R}##, then ##A(\lambda x) = \lambda A(x)\in S##.

Is this correct?
 
Last edited:
Physics news on Phys.org
squenshl said:
Problem Statement: 1. Let ##S## be a subspace of ##\mathbb{R}^m## and let ##A## be a ##m\times n## matrix.
Prove that the set ##T:= \left\{\mathbf{x}\in \mathbb{R}^n:A\mathbf{x}\in S\right\}## is a subspace of ##\mathbb{R}^n##.
Relevant Equations: None

1. Let's show the three conditions for a subspace are satisfied:
Since ##\mathbf{0}\in \mathbb{R}^n##, ##A\times \mathbf{0} = \mathbf{0}\in S##.
Suppose ##x_1, x_2\in \mathbb{R}^n##, then ##A(x_1+x_2) = A(x_1)+A(x_2)\in S##.
Suppose ##x\in S## and ##\lambda\in \mathbb{R}##, then ##A(\lambda x) = \lambda A(x)\in S##.

Is this correct?

Not really. At least the way you write it down does not fully convince me that you have the right idea.

You have to take ##x_1,x_2## in ##T## and then show that ##x_1+x_2\in T##.

Similarly you have to take ##x\in T, \lambda \in \mathbb{R}## and show that ##\lambda x\in T##.

Please also indicate where you use that ##S## is a subspace.

Addendum: Consider the linear transformation $$L:\mathbb{R}^n \to \mathbb{R}^m: x \mapsto Ax $$

This exercice wants you to show that the preimage ##T:=L^{-1}(S)## is a subspace of ##\mathbb{R}^n##.

This occurs in a lot of places in abstract algebra (and other disciplines): the inverse image of a subspace of the codomain is a subspace of the domain.

In abstract algebra, one can prove this result for groups, modules (of which vector spaces are general cases), rings etc. all at once by considering the notion of ##X##-groups.

If you are not familiar with abstract algebra, you can safely ignore the addendum.
 
Last edited by a moderator:
Thanks!

1.Since ##\mathbf{0}\in T##, ##A(\mathbf{0})\in S## which is non-empty.
2. Suppose ##x_1,x_2\in T##. Then there exists vectors ##x_1,x_2\in S## such that we have ##A(x_1)## and ##A(x_2)##. We then have that ##x_1+x_2\in S## and ##A(x_1+x_2) = A(x_1)+A(x_2)##, i.e. ##x_1+x_2\in T##.
3. Suppose ##\mathbf{x}\in T##, with ##\lambda\in \mathbb{R}##, then ##\lambda \mathbf{x}\in S## and ##A(\lambda \mathbf{x}) = \lambda A(\mathbf{x})## which shows that ##\lambda \mathbf{x}\in T##.
 
squenshl said:
Thanks!

1.Since ##\mathbf{0}\in T##, ##A(\mathbf{0})\in S## which is non-empty.
2. Suppose ##x_1,x_2\in T##. Then there exists vectors ##x_1,x_2\in S## such that we have ##A(x_1)## and ##A(x_2)##. We then have that ##x_1+x_2\in S## and ##A(x_1+x_2) = A(x_1)+A(x_2)##, i.e. ##x_1+x_2\in T##.
3. Suppose ##\mathbf{x}\in T##, with ##\lambda\in \mathbb{R}##, then ##\lambda \mathbf{x}\in S## and ##A(\lambda \mathbf{x}) = \lambda A(\mathbf{x})## which shows that ##\lambda \mathbf{x}\in T##.

Your proof for 2 and 3 are again wrong. You claim for example that ##x_1,x_2## live both in ##S## and ##T##, which doesn't make sense. These sets live in (possibly) different vector spaces.
 
Yeah that certainly doesn't make sense!

1. Suppose ##\mathbf{0}\in T##, ##A(\mathbf{0})\in S## which is non-empty.
2. Suppose ##x_1,x_2\in T##. We then have that ##A(x_1+x_2) = A(x_1)+A(x_2)\in S##, i.e. ##x_1+x_2\in T##.
3. Suppose ##\mathbf{x}\in T##, with ##\lambda\in \mathbb{R}##, ##A(\lambda \mathbf{x}) = \lambda A(\mathbf{x})\in S## which shows that ##\lambda \mathbf{x}\in T##.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
1
Views
1K