MHB Prove the binomial identity ∑(-1)^j(n choose j)=0

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Binomial Identity
AI Thread Summary
The discussion centers on proving the binomial identity ∑(-1)^j(n choose j)=0 using two different methods. One participant suggests using mathematical induction as a potential proof strategy. Another participant expresses surprise at the challenge level, indicating that they initially thought it was an easier problem. They also appreciate the contributions of another member who provided two approaches to the proof. The conversation highlights the collaborative nature of problem-solving in mathematics.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove the binomial identity:

$$\sum_{j=0}^{n}(-1)^j{n \choose j}=0$$

- in two different ways
 
Mathematics news on Phys.org
lfdahl said:
Prove the binomial identity:

$$\sum_{j=0}^{n}(-1)^j{n \choose j}=0$$

- in two different ways
The only way I can think of is to do an induction proof. I haven't sat down to do it but it shouldn't be too hard.

-Dan

(Ahem!) I thought you were asking for help. When I saw it was a challenge I couldn't edit it out. (I thought it was a rather easy problem for you to be asking for help on.) Anyway, if someone else doesn't post it I'll get back to it later.
 
First method.

When $n$ is odd, it’s easy. The coefficients $\displaystyle\binom nj$ and $\displaystyle\binom n{n-j}$ from $j=0$ to $j=n$ pair up nicely; also $(-1)^{n-j}=(-1)^n(-1)^j=-(-1)^j$ (as $n$ is odd). Thus
$$\sum_{j=0}^n(-1)^j\binom nj$$

$\displaystyle=\ \sum_{j=0}^{\frac{n-1}2}\left[(-1)^j\binom nj + (-1)^{n-j}\binom n{n-j}\right]$

$\displaystyle=\ \sum_{j=0}^{\frac{n-1}2}\left[(-1)^j\binom nj - (-1)^j\binom n{n-j}\right]$

$=\ 0$.

Suppose $n$ is even, so $(-1)^n=1$ and $(-1)^{n-1}=-1$. We use the well-known identity
$$\binom nj\ =\ \binom{n-1}{j-1}+\binom{n-1}j$$
(which is simply saying that a binomial coefficient is the sum of the two coefficients above it in Pascal’s triangle). Then
$$\sum_{j=0}^n(-1)^j\binom nj$$

$\displaystyle=\ 1\,+\,\sum_{j=1}^{n-1}\left[(-1)^j\binom{n-1}{j-1} + (-1)^j\binom {n-1}j\right]\,+\,(-1)^n$

$\displaystyle=\ 1\,+\,\sum_{j=1}^{n-1}\left[-(-1)^{j-1}\binom{n-1}{j-1} + (-1)^j\binom {n-1}j\right]\,+\,1$

$\displaystyle=\ 1\,+\,\left[-(-1)^0\binom{n-1}0+(-1)^{n-1}\binom{n-1}{n-1}\right]\,+\,1$ (by telescoping)

$=\ 1+[(-1)+(-1)]+1$

$=\ 0$.Second method.

Expand $0=[1+(-1)]^n$ binomially.
 
Thankyou very much, Olinguito, for your participation and two nice approaches! (Yes)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
3
Views
2K
Replies
9
Views
2K
Replies
4
Views
2K
Replies
4
Views
1K
Replies
8
Views
2K
Replies
2
Views
2K
Replies
4
Views
2K
Back
Top