Prove the binomial identity ∑(-1)^j(n choose j)=0

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Binomial Identity
Click For Summary
SUMMARY

The forum discussion centers on proving the binomial identity ∑(-1)^j(n choose j) = 0. Participants suggest using induction as one method of proof, while another contributor acknowledges the simplicity of the problem and expresses willingness to provide additional approaches. The identity holds true for all non-negative integers n, confirming its validity through combinatorial reasoning.

PREREQUISITES
  • Understanding of binomial coefficients, specifically "n choose j"
  • Familiarity with mathematical induction techniques
  • Basic knowledge of combinatorial identities
  • Experience with algebraic manipulation of summations
NEXT STEPS
  • Research combinatorial proofs of binomial identities
  • Learn advanced techniques in mathematical induction
  • Explore generating functions related to binomial coefficients
  • Study the implications of the binomial theorem in combinatorics
USEFUL FOR

Mathematicians, students studying combinatorics, educators teaching binomial identities, and anyone interested in advanced proof techniques in mathematics.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove the binomial identity:

$$\sum_{j=0}^{n}(-1)^j{n \choose j}=0$$

- in two different ways
 
Mathematics news on Phys.org
lfdahl said:
Prove the binomial identity:

$$\sum_{j=0}^{n}(-1)^j{n \choose j}=0$$

- in two different ways
The only way I can think of is to do an induction proof. I haven't sat down to do it but it shouldn't be too hard.

-Dan

(Ahem!) I thought you were asking for help. When I saw it was a challenge I couldn't edit it out. (I thought it was a rather easy problem for you to be asking for help on.) Anyway, if someone else doesn't post it I'll get back to it later.
 
First method.

When $n$ is odd, it’s easy. The coefficients $\displaystyle\binom nj$ and $\displaystyle\binom n{n-j}$ from $j=0$ to $j=n$ pair up nicely; also $(-1)^{n-j}=(-1)^n(-1)^j=-(-1)^j$ (as $n$ is odd). Thus
$$\sum_{j=0}^n(-1)^j\binom nj$$

$\displaystyle=\ \sum_{j=0}^{\frac{n-1}2}\left[(-1)^j\binom nj + (-1)^{n-j}\binom n{n-j}\right]$

$\displaystyle=\ \sum_{j=0}^{\frac{n-1}2}\left[(-1)^j\binom nj - (-1)^j\binom n{n-j}\right]$

$=\ 0$.

Suppose $n$ is even, so $(-1)^n=1$ and $(-1)^{n-1}=-1$. We use the well-known identity
$$\binom nj\ =\ \binom{n-1}{j-1}+\binom{n-1}j$$
(which is simply saying that a binomial coefficient is the sum of the two coefficients above it in Pascal’s triangle). Then
$$\sum_{j=0}^n(-1)^j\binom nj$$

$\displaystyle=\ 1\,+\,\sum_{j=1}^{n-1}\left[(-1)^j\binom{n-1}{j-1} + (-1)^j\binom {n-1}j\right]\,+\,(-1)^n$

$\displaystyle=\ 1\,+\,\sum_{j=1}^{n-1}\left[-(-1)^{j-1}\binom{n-1}{j-1} + (-1)^j\binom {n-1}j\right]\,+\,1$

$\displaystyle=\ 1\,+\,\left[-(-1)^0\binom{n-1}0+(-1)^{n-1}\binom{n-1}{n-1}\right]\,+\,1$ (by telescoping)

$=\ 1+[(-1)+(-1)]+1$

$=\ 0$.Second method.

Expand $0=[1+(-1)]^n$ binomially.
 
Thankyou very much, Olinguito, for your participation and two nice approaches! (Yes)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K