Prove the Power Rule (calculus)

AI Thread Summary
To prove the power rule d/dx[x^n] = nx^(n-1) for rational n, start with y = x^(p/q) and rewrite it as y^q = x^p. After implicit differentiation, you obtain q(y^(q-1))(dy/dx) = p(x^(p-1)). Isolate dy/dx to find that dy/dx = (p/q)x^(p/q - 1). Finally, substitute y back into the equation to arrive at the required result.
mattxr250
Messages
8
Reaction score
0
Ok guys, I'm new here and I need some help with a math problem...

The problem asks me to prove the power rule ---> d/dx[x^n] = nx^(n-1) for the case in which n is a ratioinal number...

the one stipulation is that I have to prove it using this method: write y=x^(p/q) in the form y^q = x^p and differentiate implicitly...assume that p and q are integers, where q>0.

Thanks for any help

Matt
 
Physics news on Phys.org
Are you allowed to assume that "d/dx[x^n] = nx^(n-1)" is true for n = an integer?

Have you differentiated "y^q = x^p" implicitly yet ?
 
yes I have and I came up with...


q(y^(q-1))(dy/dx) = p(x^(p-1))

but I'm stuck after I get here...i guess I could isolate dy/dx, but I'm not sure where to go from there...any help?
 
Well, do you know what y is?
 
if y = x^(p/q)
then
y' = (p/q)x^(p/q - 1)

Use the expression you got for for the implicit differentiatoin and the expression y^q = x^p and manipulatre them to end up with the required result, shown above.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top