Prove Trig. Inequality: A,B & C Are Triangle Angles

  • Thread starter Thread starter Jean-Louis
  • Start date Start date
  • Tags Tags
    Inequality Trig
AI Thread Summary
The discussion centers on proving the inequality involving the sine of triangle angles, specifically that (sinA/2 + sinB/2 + sinC/2)^2 is greater than or equal to (sinA)^2 + (sinB)^2 + (sinC)^2. Participants suggest using trigonometric identities and manipulations to approach the proof. One contributor outlines a method involving the Law of Cosines and expresses frustration with the complexity of the proof. The conversation highlights the challenge of finding an elementary proof while ensuring the conditions of triangle angles are met. The thread concludes with a sense of exasperation over the intricate nature of the problem.
Jean-Louis
Messages
15
Reaction score
0
Show that :

(sinA/2 + sinB/2 + sinC/2)^2 >= (sinA)^2 + (sinB)^2 + (sinC)^2

A,B and C are the angles of a triangle.
 
Mathematics news on Phys.org
Are you looking for an elementary proof using trig manipulations or identites?
I can't see anything, Ill just right the question again that other people might find easier to help you with.

Show that \frac{\sin A + \sin B + \sin C}{2} >= \sin^2 A + \sin^2 B + \sin^2 C
bounded by the condition A+B+C=\pi
 
Gib Z, i think you have wrote the question wrong. i think Jean-Louis wrote,

\left(\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}\right)^{2} \geq \sin^2 A + \sin^2 B + \sin^2 C where A + B + C = \pi
 
Jean-Louis said:
Show that :

(sinA/2 + sinB/2 + sinC/2)^2 >= (sinA)^2 + (sinB)^2 + (sinC)^2

A,B and C are the angles of a triangle.

Have you tried doing anything? I'd multiply out the left hand side first, and see what happens.
 
I think I got it. Here it goes :

sin(x/2) = +/- sqrt((1-cos(x))/2)
and sin^2(z) = 1 - cos^2(x)

so that that (sinA)^2 + (sinB)^2 + (sinC)^2 = 3 - (cos^2(A) + cos^2(B) +
cos^2(C))

Now (sin A/2 + sin B/2 + sin C/2)^2 = (+/- sqrt((1-cos(A))/2) + +/-
sqrt((1-cos(B))/2) + +/- sqrt((1-cos(C)/2) ) ^2

If we let

A = +/- sqrt((1-cos(A))/2)
B = +/- sqrt((1-cos(B))/2)
C = +/- sqrt((1-cos(C))/2)

Then (sin A/2 + sin B/2 + sin C/2)^2 = A^2 + B^2 + C^2 + 2AB + 2AC + 2BC

A^2 = (1 - cos(A))/2
B^2 = (1 - cos(B))/2
C^2 = (1 - cos(C))/2

AB = 1/2 SQRT((1-cosA)(1-cosB))
AC = 1/2 SQRT((1-cosA)(1-cosC))
BC = 1/2 SQRT((1-cosB)(1-cosC))

so you have

(1 - cos(A))/2 + (1 - cos(B))/2 + (1 - cos(C))/2 +
SQRT((1-cosA)(1-cosB)) + SQRT((1-cosA)(1-cosC)) + SQRT((1-cosB)(1-cosC))
>= 3 - (cos^2(A) + cos^2(B) + cos^2(C))

Now the Law of cosines tells us this...

cosC = (a^2 + b^2 -c^2)/2ab
cosA = (b^2 + c^2 - a^2)/2bc
cosB = ((a^2 + c^2 - b^2)/2ac

You have all the equations in terms of cosines - substitute simplify...

QED
 
Kill me. Somebody kill me...
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top