Kamataat
- 137
- 0
Verify A\cap(B-C)=(A\cap B)-(A\cap C).
This is how I did it:
From x\in[A\cap(B-C)] (lhs) we have that
1.) x\in A
2.) x\in B
3.) x\notin C
From #1 and #2 we have that
4.) x\in(A\cap B)
Now, since x\in(A\cap C) means that x\in A and x\in C, but we have x\notin C, it follows that
5.) x\notin(A\cap C)
Remembering that x\in(A-B) means that x\in A and x\notin B it follows from #4 and #5 that
x\in[(A\cap B)-(A\cap C)] (rhs)
Is this right?
- Kamataat
This is how I did it:
From x\in[A\cap(B-C)] (lhs) we have that
1.) x\in A
2.) x\in B
3.) x\notin C
From #1 and #2 we have that
4.) x\in(A\cap B)
Now, since x\in(A\cap C) means that x\in A and x\in C, but we have x\notin C, it follows that
5.) x\notin(A\cap C)
Remembering that x\in(A-B) means that x\in A and x\notin B it follows from #4 and #5 that
x\in[(A\cap B)-(A\cap C)] (rhs)
Is this right?
- Kamataat