Proving a property of eigenvalues and their eigenvectors.

pondzo
Messages
168
Reaction score
0

Homework Statement



I am asked to prove that if λ is an eigenvalue of A then λ + k is an eigenvalue of
A + kI.

The Attempt at a Solution



## A\vec{v}=\lambda\vec{v} ##

## (A+kI)\vec{v}=\lambda\vec{v} ##
## A\vec{v}+k\vec{v} = \lambda\vec{v} ## → ## A\vec{v} = \lambda\vec{v} - k\vec{v} ##
## A\vec{v} = (\lambda-k)\vec{v} ## however, this is not λ+k
I must be missing something pretty obvious, but i can't see what it is...
 
Physics news on Phys.org
Your second step is the error. You have assumed in that step that lambda is an eigenvalue of A+kI in that step.
 
Ahh thank you! I didn't even realize that, I am so use to denoting the eigenvalues lambda..
 
pondzo said:

Homework Statement



I am asked to prove that if λ is an eigenvalue of A then λ + k is an eigenvalue of
A + kI.

The Attempt at a Solution



## A\vec{v}=\lambda\vec{v} ##

## (A+kI)\vec{v}=\lambda\vec{v} ##
## A\vec{v}+k\vec{v} = \lambda\vec{v} ## → ## A\vec{v} = \lambda\vec{v} - k\vec{v} ##
## A\vec{v} = (\lambda-k)\vec{v} ## however, this is not λ+k
I must be missing something pretty obvious, but i can't see what it is...

If ##\lambda + k## is an eigenvalue of ##A + kI##, then:

##Av = \lambda v##
##Av + (kI)v = \lambda v + (kI)v##
##(A + kI)v = (\lambda + kI)v##
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top