Proving bc=d for Cubic Function with r=-s

  • Thread starter Thread starter Aki
  • Start date Start date
  • Tags Tags
    Cubic Function
Aki
Messages
83
Reaction score
0
Hey I need help with this proof:

Consider the cubic function: x^3 + bx^2 + cx + d = 0 . If the two solutions of the cubic function are not equal, ie r != s, but r=-s, then prove that bc=d.

Thanks
 
Mathematics news on Phys.org
I'll give you help on this one, but please, next time post these problems in the Homework Help section. Its not just for our sake, you'll get a faster reply there too.

-------------
If all coefficients are real, by the complex conjugate root theorem you know that since two of the roots are real, s and -s, then the third root must be real as well. So now use the factor theorem and write the polynomial as a product of its factors,

x^3+bx^2+cx+d = (x-k)(x^2-s^2).

Equate coefficients and see what you get.
 
Gib Z said:
I'll give you help on this one, but please, next time post these problems in the Homework Help section. Its not just for our sake, you'll get a faster reply there too.

-------------
If all coefficients are real, by the complex conjugate root theorem you know that since two of the roots are real, s and -s, then the third root must be real as well. So now use the factor theorem and write the polynomial as a product of its factors,

x^3+bx^2+cx+d = (x-k)(x^2-s^2).

Equate coefficients and see what you get.


Very helpful. Thanks a lot Gib Z
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top