Proving C(AB) = C(A) with Orthogonal Complement and Matrix Multiplication

samuelr0750
Messages
3
Reaction score
0

Homework Statement


R(M) and C(M) are the row and column spaces of M.
Let A be an nxp matrix, and B be a bxq matrix.
Show that C(AB) = C(A) when the orthogonal complement of R(A) + C(B) = R^p (i.e. the orthogonal complement of R(A) and C(B) span R^p).


Homework Equations


I know that the orthogonal complement of R(A) is the null spaceo f A.
I also know that C(X'X) = C(X') but that doesn't help


The Attempt at a Solution


Not sure where to go... thanks.
 
Physics news on Phys.org
samuelr0750 said:

Homework Statement


R(M) and C(M) are the row and column spaces of M.
Let A be an nxp matrix, and B be a bxq matrix.
Show that C(AB) = C(A) when the orthogonal complement of R(A) + C(B) = R^p (i.e. the orthogonal complement of R(A) and C(B) span R^p).
Are you sure you stated the question correctly? If ##A## is ##n \times p## and ##B## is ##b \times q##, then the product ##AB## isn't even defined unless ##p = b##.
 
I"m sorry, i meant A is nxp and B is p xq.
 
By "orthogonal complement of R(A) + C(B)" do you mean ##R(A)^{\perp} + C(B)##, or something else?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top