Proving Conjugate Subgroups K=H with Prime Number of Elements

  • Thread starter Thread starter *FaerieLight*
  • Start date Start date
  • Tags Tags
    Conjugate
*FaerieLight*
Messages
43
Reaction score
0

Homework Statement


How would I go about proving that if K = gHg-1, for some g \inG, where K and H are both subgroups of G with a prime number of elements, then K = H?


Homework Equations


I've tried to prove it by saying that if K = gHg-1 then Kg = gH, and since H = gHg-1, then Hg = gH also, so Hg = Kg, and hence H = K. I don't think that this proof is valid, unfortunately. And I've just realized that H does not necessarily equal gHg-1 unless g is in the normaliser of H. :(

The Attempt at a Solution


This is actually something which I am attempting to prove in order to prove something else, so I'm not even sure if what I'm trying to prove holds at all. I just need K = H for my proof to work.
 
Physics news on Phys.org
Take G=S3, the symmetric group on three elements. Take K={e,(12)} and H={e,(13)}. The subgroups both have order 2 (a prime) and they are conjugate via g=(23), but they aren't equal.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top