Proving Continuity of Power Series Function

ricardianequiva
Messages
14
Reaction score
0

Homework Statement


Show, from the definition of continuity, that the power series function f(x)=sum(a_n*x^n) is continuous for its radius of convergence.

Homework Equations


Definition of continuity

The Attempt at a Solution


Must show that for any |a| < R, given e>0 there exists d>0 such that |x-a|<d => |f(x) - f(a)|.
|f(x)-f(a)| < e.
|f(x) - f(a)| <= |f(x-a)|
Then I get stuck here.
Any help would be appreciated
 
Last edited:
Physics news on Phys.org
|f(x)-f(a)| is not less than |f(x-a)|. It's not like f is linear or something. |f(x)-f(a)|=|(f(x)-f(a))/(x-a)|*|x-a|. Now to get a d, you need a bound on |(f(x)-f(a))/(x-a)| near x=a. Hint: doesn't that look like a difference quotient?
 
Hmm we haven't done differentiation yet so I'm not sure how helpful the |(f(x)-f(a))/(x-a)| will be.
 
You are doing power series without having done differentiation!? That's an interesting pedagogical approach. You can still factor (x-a) algebraically from each power of f(x)-f(a), but I'm not sure how you show the rest of it converges without using the differentiability of power series.
 
yeah...
Thanks for the help though
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top