Dustinsfl
- 2,217
- 5
If \{a_n\}\to A, \ \{a_nb_n\} converge, and A\neq 0, then prove \{b_n\} converges.
Let \epsilon>0. Then \exists N_1,N_2\in\mathbb{N}, \ n\geq N_1,N_2
|a_n-A|<\frac{\epsilon}{2}
And let \{a_nb_n\}\to AB
So, |a_nb_n-AB|<\epsilon
I don't know how to show b_n is < epsilon.
Let \epsilon>0. Then \exists N_1,N_2\in\mathbb{N}, \ n\geq N_1,N_2
|a_n-A|<\frac{\epsilon}{2}
And let \{a_nb_n\}\to AB
So, |a_nb_n-AB|<\epsilon
I don't know how to show b_n is < epsilon.