AiRAVATA
- 172
- 0
Sorry to keep bothering, but I am preparing an exam based on Spivak's book on forms (chapter 7 of tome 1).
I need to prove that if \dim V \le 3, then every \omega \in \Lambda^2(V) is decomposable, where an element \omega \in \Lambda^k(V) is decomposable if \omega =\phi_1\wedge\dots\wedge\phi_k for some \phi_i \in V^*=\Lambda^1(V).
I think I must use the inner product, but I am not sure. If \omega \in \Lambda^2(V), then
\omega=a_{12} \phi_1\wedge \phi_2+a_{13}\phi_1\wedge\phi_2+a_{23}\phi_2\wedge \phi_3
I know that if \{v_1,v_2,v_3\} are a basis of V, then
\begin{array}{l} i_{v_1}\phi_1\wedge\phi_2\wedge\phi_3=\phi_2\wedge\phi_3 \\<br /> i_{v_2}\phi_1\wedge\phi_2\wedge\phi_3=-\phi_1\wedge\phi_3 \\<br /> i_{v_3}\phi_1\wedge\phi_2\wedge\phi_3=\phi_1\wedge\phi_2<br /> \end{array}
so
\omega=(a_{12}i_{v_3}-a_{13}i_{v_2}+a_{23}i_{v_1}) \phi_1\wedge\phi_2\wedge\phi_3
and given the linearity
\omega=i_v\phi_1\wedge\phi_2\wedge\phi_3
where v=a_{21}v_1-a_{13}v_2+a_{12}v_3.
Does that prove the result?
Other idea I had is to express \phi_i in terms of the base of \Lambda^1(V), but I seem to going nowhere.
I need to prove that if \dim V \le 3, then every \omega \in \Lambda^2(V) is decomposable, where an element \omega \in \Lambda^k(V) is decomposable if \omega =\phi_1\wedge\dots\wedge\phi_k for some \phi_i \in V^*=\Lambda^1(V).
I think I must use the inner product, but I am not sure. If \omega \in \Lambda^2(V), then
\omega=a_{12} \phi_1\wedge \phi_2+a_{13}\phi_1\wedge\phi_2+a_{23}\phi_2\wedge \phi_3
I know that if \{v_1,v_2,v_3\} are a basis of V, then
\begin{array}{l} i_{v_1}\phi_1\wedge\phi_2\wedge\phi_3=\phi_2\wedge\phi_3 \\<br /> i_{v_2}\phi_1\wedge\phi_2\wedge\phi_3=-\phi_1\wedge\phi_3 \\<br /> i_{v_3}\phi_1\wedge\phi_2\wedge\phi_3=\phi_1\wedge\phi_2<br /> \end{array}
so
\omega=(a_{12}i_{v_3}-a_{13}i_{v_2}+a_{23}i_{v_1}) \phi_1\wedge\phi_2\wedge\phi_3
and given the linearity
\omega=i_v\phi_1\wedge\phi_2\wedge\phi_3
where v=a_{21}v_1-a_{13}v_2+a_{12}v_3.
Does that prove the result?
Other idea I had is to express \phi_i in terms of the base of \Lambda^1(V), but I seem to going nowhere.