Proving/Disproving: RQ is Tridiagonal Matrix

  • Thread starter Thread starter kat18
  • Start date Start date
  • Tags Tags
    Matrix
kat18
Messages
1
Reaction score
0
Hi, I'm having some difficulty with the following, please help.

Suppose A in R^{nxn} (n>3) is a tridiagonal matrix where Q is an orthogonal matrix and R is an upper-triangular matrix such that A=QR .

Must RQ be a tridiagonal matrix?
If yes, give a proof; otherwise, construct a counterexample.
 
Physics news on Phys.org
RQ = Q-1AQ = QTAQ. I don't know how much that helps, but it may be a start.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top