Proving Eigenvalues: A Unit Vector Approach for (A - λI)x = b

  • Thread starter Thread starter sana2476
  • Start date Start date
  • Tags Tags
    Eigenvalue Proof
sana2476
Messages
33
Reaction score
0

Homework Statement



Let x be a unit vector. Namely x(Transpose)*x = 1. If (A − Let x be a unit vector. If (A − λI)x = b, then λ is an eigenvalue of A − bx(transpose).


The Attempt at a Solution



I have no idea where to start this proof.
 
Physics news on Phys.org
Start like this.

<br /> (A - bx&#039;)x = (A - \lambda I + \lambda I - bx&#039;)x<br />

Expand the right hand side, and use facts about A, \lambda, b and x.
 
Last edited:
Ok...so here's what I have so far..I'm not sure if I'm on the right track..

Since x(transpose)*x=1
Therefore, (A-b*x(transpose))*x=λx
So Ax - bx(transpose)x=λx
Ax-b=λx
Then Ax-λx=b
Hence you have (A-λI)x=b

I don't know if I am begging the question by doing it this way though
 
No. Look at

\begin{align*}<br /> (A - bx&#039;)x &amp; = (A - \lambda I + \lambda I - bx&#039;) x \\<br /> &amp; = (A - \lambda I) x + (\lambda I - bx&#039;)x<br /> \end{align*}<br />

What do you know about

<br /> (A - \lambda I)x<br /> ?

use that, together with what you get when you expand

<br /> (\lambda I - bx&#039;) x<br />

(don't forget that x&#039; x = 1)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top