Proving Entropy statement is equivalent to Clausius statement

AI Thread Summary
The discussion addresses the application of the change in entropy equation for solids during heat exchange before reaching thermal equilibrium. It clarifies that a small amount of heat transfer is allowed, preventing significant temperature changes in the solids until they are separated. After separation, each solid can re-equilibrate independently. The correct equations for final temperatures and entropy change are provided, emphasizing the importance of not allowing the combined system to reach thermal equilibrium during the process. The conversation highlights the nuances of applying thermodynamic principles in specific scenarios.
member 731016
Homework Statement
Please see below
Relevant Equations
##\Delta S = \frac{Q}{T}##
For this,
1680464760625.png

I don't understand how we can apply the change in entropy equation for each solid since the ##\frac{dT}{dt}## for each solid will be non-zero until the solids reach thermal equilibrium. My textbook says that the ##\Delta S## for a system undergoing a reversible process at constant temperature is given by
##\Delta S = \frac{Q}{T}##, however, the temperature of the each solid is not constant while the heat is getting exchanged.

Dose anybody please know what allows them to do that?

Many thanks!
 
Physics news on Phys.org
They are allowing only a small amount of heat to transfer, so that the temperatures of the two bodies do not significantly change before they are separated. They are not allowing the combined system to reach thermal equilibrium. After the bodies are separated, each body is allowed to re-equilibrate by itself.

To be more precise, they should write $$T_{1f}=T_1-\frac{Q}{mC}$$ $$T_{2f}=T_2+\frac{Q}{mC}$$and $$\Delta S=mC\ln{(T_{1f}/T1)}+mC\ln{(T_{2f}/T2)}$$
 
  • Like
Likes member 731016
Chestermiller said:
They are allowing only a small amount of heat to transfer, so that the temperatures of the two bodies do not significantly change before they are separated. They are not allowing the combined system to reach thermal equilibrium. After the bodies are separated, each body is allowed to re-equilibrate by itself.

To be more precise, they should write $$T_{1f}=T_1-\frac{Q}{mC}$$ $$T_{2f}=T_2+\frac{Q}{mC}$$and $$\Delta S=mC\ln{(T_{1f}/T1)}+mC\ln{(T_{2f}/T2)}$$
Thank you for your help @Chestermiller ! That is very helpful!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top