Dustinsfl
- 2,217
- 5
x,y,z\in\mathbb{R}
x\sim y iff. x-y\in\mathbb{Q}
Prove this is an equivalence relation.
Reflexive:
a\sim a
a-a=0; however, does 0\in\mathbb{Q}? I was under the impression
0\notin\mathbb{Q}
Symmetric:
a\sim b, then b\sim a
Since a,b\sim\mathbb{Q}, then a and b can expressed as a=\frac{c}{d} and b=\frac{e}{f}
\frac{c}{d}-\frac{e}{f}\rightarrow \frac{cf-de}{df}
How can I get than in the form of \frac{e}{f}-\frac{c}{d}?
Would it be allowable to multiple through by a -1 and then swap cd and ef to obtain:
\frac{ef-cd}{df}\rightarrow\frac{e}{f}-\frac{c}{d}?
Transitive:
a\sim b, b\sim c, then a\sim c
c=\frac{g}{h}
\frac{c}{d}-\frac{e}{f}
\frac{e}{f}-\frac{g}{h}
add together
\frac{c}{d}-\frac{g}{h}\rightarrow\frac{ch-gd}{dh}\in\mathbb{Q} a\sim c
Equivalence class of \sqrt{2} and a
[\sqrt{2}]=(x\in\mathbb{R}|x\sim\sqrt{2})
x=\frac{a}{b} and a,b\in\mathbb{Z}
[\sqrt{2}]=(x\in\mathbb{R}|\frac{a}{b}+\sqrt{2}\sim\sqrt{2})
Correct?
x\sim y iff. x-y\in\mathbb{Q}
Prove this is an equivalence relation.
Reflexive:
a\sim a
a-a=0; however, does 0\in\mathbb{Q}? I was under the impression
0\notin\mathbb{Q}
Symmetric:
a\sim b, then b\sim a
Since a,b\sim\mathbb{Q}, then a and b can expressed as a=\frac{c}{d} and b=\frac{e}{f}
\frac{c}{d}-\frac{e}{f}\rightarrow \frac{cf-de}{df}
How can I get than in the form of \frac{e}{f}-\frac{c}{d}?
Would it be allowable to multiple through by a -1 and then swap cd and ef to obtain:
\frac{ef-cd}{df}\rightarrow\frac{e}{f}-\frac{c}{d}?
Transitive:
a\sim b, b\sim c, then a\sim c
c=\frac{g}{h}
\frac{c}{d}-\frac{e}{f}
\frac{e}{f}-\frac{g}{h}
add together
\frac{c}{d}-\frac{g}{h}\rightarrow\frac{ch-gd}{dh}\in\mathbb{Q} a\sim c
Equivalence class of \sqrt{2} and a
[\sqrt{2}]=(x\in\mathbb{R}|x\sim\sqrt{2})
x=\frac{a}{b} and a,b\in\mathbb{Z}
[\sqrt{2}]=(x\in\mathbb{R}|\frac{a}{b}+\sqrt{2}\sim\sqrt{2})
Correct?
Last edited: