Proving Even Fct Lim x->0 f(x)=L iff Lim x->0+ f(x)=L

MathSquareRoo
Messages
26
Reaction score
0

Homework Statement


Prove that if f: R->R is an even function, then lim x->0 f(x)=L if and only if lim x->0+ f(x)=L.


Homework Equations





The Attempt at a Solution



So far I have:

If f is an even function f(x)=f(-x) for x in domain of f.

Then I am trying to apply the limit definitions, but am unsure of how to write the proof from here.
 
Physics news on Phys.org
MathSquareRoo said:

Homework Statement


Prove that if f: R->R is an even function, then lim x->0 f(x)=L if and only if lim x->0+ f(x)=L.


Homework Equations





The Attempt at a Solution



So far I have:

If f is an even function f(x)=f(-x) for x in domain of f.

Then I am trying to apply the limit definitions, but am unsure of how to write the proof from here.

Write down the definition of lim x->0+ f(x)=L. Now change x to -x. Doesn't it look like the definition of lim x->0- f(x)=L once you use that f is even?
 
So lim x->0+ f(x)=L implies there exists a real number L s.t. epsilon>0 there exists delta>0 s.t. lf(x)-Ll<epsilon provided 0<x-a<delta.

Then lim x->0+ f(-x)=L implies that there exists a real number L s.t. epsilon>0 there exists delta>0 s.t. lf(-x)-Ll<epsilon provided 0<x-a<delta.

I have the definitions, but I don't understand the last part of your comment, can you clarify?
 
MathSquareRoo said:
So lim x->0+ f(x)=L implies there exists a real number L s.t. epsilon>0 there exists delta>0 s.t. lf(x)-Ll<epsilon provided 0<x-a<delta.

Then lim x->0+ f(-x)=L implies that there exists a real number L s.t. epsilon>0 there exists delta>0 s.t. lf(-x)-Ll<epsilon provided 0<x-a<delta.

I have the definitions, but I don't understand the last part of your comment, can you clarify?


'a' in your problem is 0. 0<x<delta, is the same as -delta<-x<0. What does the definition of lim x->0- f(x)=L look like?
 
lim x->0- f(x)=L implies that there exists a real number L s.t. epsilon>0 there exists delta>0 s.t. lf(x)-Ll<epsilon provided 0<a-x<delta.

I'm am getting confused with all these definitions though, can you help me organize the argument using the definitions?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top