Proving f inverse is homomorphic

  • Thread starter Thread starter DPMachine
  • Start date Start date
  • Tags Tags
    Inverse
DPMachine
Messages
26
Reaction score
0
I'm trying to show:

If f: S -> S' is an isomorphism of <S, *> with <S', *'>, then f^(-1) is homomorphic.

My take:

So I have to show that f^(-1)(x' *' y') = f^(-1)(x') * f^(-1)(y').

Since f is bijective (onto, more precisely) I know that f^(-1)(x') = x and f^(-1)(y') = y. So f^(-1)(x') * f^(-1)(y') = xy.

How can I simplify f^(-1)(x' *' y') though?

Thanks.
 
Physics news on Phys.org
EDIT: Nevermind, that's not right.

Sorry about not using latex, by the way. I was writing from a mobile device.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top