Proving g°f is Onto: Showing the Ontoness of Composed Functions

  • Thread starter Thread starter charmedbeauty
  • Start date Start date
  • Tags Tags
    Proof
charmedbeauty
Messages
266
Reaction score
0

Homework Statement



If f and g are both onto show g°f is onto.

f:X→Y and g:Y→Z



Homework Equations





The Attempt at a Solution



Since f is onto then there exists an x in X such that f(x) = y, for all y in Y.

Since g is onto then there exists a y in Y such that g(y) =z for all z in Z.

Hence, if g°f is not onto then there exists a z in Z such that there is no corresponding x in X. But since g and f are onto this is not possible. Therefore, g°f is onto.
 
Physics news on Phys.org
Your basic idea is correct. However, I would be careful with how exactly you write this out. Your first statement, "Since f is onto then there exists an x in X such that f(x) = y, for all y in Y" is not quite correct. The way you have it arranged, it reads as if there is one specific x in X that maps to all values of y in Y.

Of course this is not what you mean, but if you're starting out with proofs (which I'm assuming you are) then it is good to be precise at first. "For a given y in Y, there exists some x in X such that f(x) = y."

Hope that helps!
 
zooxanthellae said:
Your basic idea is correct. However, I would be careful with how exactly you write this out. Your first statement, "Since f is onto then there exists an x in X such that f(x) = y, for all y in Y" is not quite correct. The way you have it arranged, it reads as if there is one specific x in X that maps to all values of y in Y.

Of course this is not what you mean, but if you're starting out with proofs (which I'm assuming you are) then it is good to be precise at first. "For a given y in Y, there exists some x in X such that f(x) = y."

Hope that helps!

Ok thanks that makes a lot more sense, noted!
 
Just pick an arbitrary z ∊ Z . It's pretty straight forward to show that there is some x ∊ X , such that g(f(x)) = z .
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top