Proving H = S_4: Lagrange's Theorem

  • Thread starter Thread starter math_nerd
  • Start date Start date
  • Tags Tags
    Theorem
math_nerd
Messages
21
Reaction score
0
Suppose that H is a subset of S_4, and that H contains (12) and (234). Prove that H=S_4.

The order of S_4 is 24.

(12)(234) = (1342) shows that the finite subset of group H is closed under the group operation, so it is a subgroup of H.

Then, using Lagrange's Theorem, |S_4:H|=24/2 = 12. so the order of H is 12 by this.

And now I am lost on how I can prove that H = S_4.
 
Physics news on Phys.org
math_nerd said:
Suppose that H is a subset of S_4, and that H contains (12) and (234). Prove that H=S_4.

There is something wrong here. The problem, as stated, is false. Did you mean that H has to be a subgroup of S_4? Because this is probably true...
 
* H is a subgroup.

And how is this true? I'm pretty lost on how to show this.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top