Proving 'If (2^n)-1 is Prime, Then n is Prime' Using Groups

  • Thread starter Thread starter Bleys
  • Start date Start date
  • Tags Tags
    Groups Prime
Bleys
Messages
74
Reaction score
0
I was trying to prove the statement "If (2^n)-1 is prime then n is prime". I've already seen the proof using factorisation of the difference of integers and getting a contradiction, but I was trying to use groups instead. I was wondering if it's possible, since I keep getting stuck.
So far I've got:
If (2^n)-1=p where p is prime then 2^{n}\equiv1 mod(p). The group {1,2,...,p-1} is cyclic and every element has order p-1. So n = k(p-1) for some positive integer k. But doesn't this mean n is not prime? which is wrong I know. Could someone point me in the right direction or a theorem that might be useful?
 
Physics news on Phys.org
Interesting problem... I'm not yet sure of a proof, but your statement

Bleys said:
The group {1,2,...,p-1} is cyclic and every element has order p-1.

is wrong. All you know is that every element has an order that divides p-1. (E.g. for p=7 the element 2 has order 3).
 
Last edited:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top