Proving Integral Identity: \int_0^a f(x)dx = \int_0^{\frac{a}{2}}[f(x)+f(a-x)]dx

  • Thread starter Thread starter John O' Meara
  • Start date Start date
  • Tags Tags
    Proof
John O' Meara
Messages
325
Reaction score
0
Prove that \int_0^a f(x)dx = \int_0^{\frac{a}{2}}[f(x) + f(a-x)]dx \\
Hence prove that \int_0^{\pi} x sin^6x dx = \pi \int_0^{\frac{\pi}{2}} sin^6x dx \\ and evaluate this integral using the following reduction formula I_{m,n}= \frac{n-1}{m+n}I_{m,n-2} \\

My effort:
\int_0^a f(x)dx = \int_0^{\frac{a}{2}}f(x)dx + \int_{\frac{a}{2}} f(a-x)dx \\. Now
\int_{\frac{a}{2}}^a f(x)dx = \int_{\frac{a}{2}}^a f(a-x)dx \\ ... by a theorem. Therefore \int_0^a f(x)dx = \int_0^{\frac{a}{2}} f(x)dx + \int_{\frac{a}{2}}^a f(a-x)dx \\. I need help to change the integral's limits to 0 and a/2 on the second integral on the right, thanks very much.
 
Physics news on Phys.org
\int_{0}^{a}f(x)dx
change variable u=a-x then we have du=-dx
-\int_{a}^{0}f(u)du=-\int_{0}^{a}f(a-x)dx
so now you have: \int_{0}^{a}f(x)dx=\int_{0}^{a}[f(x)-f(a-x)]/2dx
another change u=x-(a/2), which gives you:
<br /> \int_{-a/2}^{a/2}f(u+a/2)-f(a/2-u)]/2du<br />
this function in the integrand is an odd function, which means that this equals 2 times the integral but from 0 to a/2.
if I am mistaken, sorry for misleading.
 
Last edited:
You are mistaken :( \int^a_0 f(x) dx = \int^a_0 f(a-x) dx

On your 2nd line of latex, Reversing the bounds as you did makes the integrals value negative, canceling the other negative.

Jean - To finish it off, u=x - (a/2) for the last integral.
 
well it should be -\int_{a}^{0}f(a-u)du=\int_{0}^{a}f(a-u)du
so yes, you are right, thanks for the correction.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top