John O' Meara
- 325
- 0
Prove that \int_0^a f(x)dx = \int_0^{\frac{a}{2}}[f(x) + f(a-x)]dx \\
Hence prove that \int_0^{\pi} x sin^6x dx = \pi \int_0^{\frac{\pi}{2}} sin^6x dx \\ and evaluate this integral using the following reduction formula I_{m,n}= \frac{n-1}{m+n}I_{m,n-2} \\
My effort:
\int_0^a f(x)dx = \int_0^{\frac{a}{2}}f(x)dx + \int_{\frac{a}{2}} f(a-x)dx \\. Now
\int_{\frac{a}{2}}^a f(x)dx = \int_{\frac{a}{2}}^a f(a-x)dx \\ ... by a theorem. Therefore \int_0^a f(x)dx = \int_0^{\frac{a}{2}} f(x)dx + \int_{\frac{a}{2}}^a f(a-x)dx \\. I need help to change the integral's limits to 0 and a/2 on the second integral on the right, thanks very much.
Hence prove that \int_0^{\pi} x sin^6x dx = \pi \int_0^{\frac{\pi}{2}} sin^6x dx \\ and evaluate this integral using the following reduction formula I_{m,n}= \frac{n-1}{m+n}I_{m,n-2} \\
My effort:
\int_0^a f(x)dx = \int_0^{\frac{a}{2}}f(x)dx + \int_{\frac{a}{2}} f(a-x)dx \\. Now
\int_{\frac{a}{2}}^a f(x)dx = \int_{\frac{a}{2}}^a f(a-x)dx \\ ... by a theorem. Therefore \int_0^a f(x)dx = \int_0^{\frac{a}{2}} f(x)dx + \int_{\frac{a}{2}}^a f(a-x)dx \\. I need help to change the integral's limits to 0 and a/2 on the second integral on the right, thanks very much.