Proving $\left\|(A-\lambda I)^{-1}\right\|_{2}$ with Inverse of A

  • Thread starter Thread starter jschmid2
  • Start date Start date
  • Tags Tags
    Inverse
jschmid2
Messages
5
Reaction score
0
Could someone please help me show that if A is Hermitian
\left\|(A-\lambda I)^{-1}\right\|_{2}=\frac{1}{min_{\lambda_{i}\in\sigma(A)}|\lambda-\lambda_{i}|}
where \sigma(A) denotes the eigenvalues of A.

I have figured out how to solve the norm without an inverse, but the inverse confuses me a bit.
Recall, that \left\|\cdot\right\|=\sqrt{r_{\sigma}(A^{*}A)}, which is to say the square root of the largest eigenvalue of A^{*}A.
 
Physics news on Phys.org
If A is hermitian you can diagonalize it with the eigenvalues lying along the diagonal. Think about what your expressions look like with A in that form.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top