LCKurtz said:
I like that so far. Now look at your original problem$$
\left| \frac 1 x - 10\right| = \frac{|1-10x|}{|x|}= \frac{|\frac 1 {10}- x|}{|\frac x{10}|}$$which you are trying to make small. Can you underestimate the denominator using your last line above?
LCKurtz said:
I wasn't done editing and accidentally posted. Look at it now.
I made a few errors in my post as well. I'm going to retype everything I've done, please let me know if I've reached a solution.
|\frac{1}{x}-10|<\epsilon \; \; \mbox{when} \; \; |x-\frac{1}{10}|<\delta
Let δ=1/20. Then, expanding the left side, we get
-\frac{1}{20}<x-\frac{1}{10}<\frac{1}{20} \; \rightarrow \; \frac{1}{10}<x<\frac{3}{10} \; \iff \; \frac{1}{10}<x \; \; \mbox {and} \; \; x<\frac{3}{10}
Inverting the left side, we get
\frac{1}{x}<10
Moving on to the right side,
<br />
\frac{1}{x}-\frac{10x}{x}<\epsilon \; \rightarrow \; \frac{1-10x}{x}<\epsilon \; \rightarrow \;<br />
\frac{-10(x-\frac{1}{10})}{x} <\epsilon
We assume that
<br />
-10(x-\frac{1}{10})<\delta, \; \; \mbox{where} \; \; \delta=\frac{1}{20}
<br />
\frac{1}{200}>x-\frac{1}{10}>-\frac{1}{200} \; \iff \; x-\frac{1}{10}< \frac{1}{200}
Which implies that
\delta=min \{ \frac{1}{20},\frac{1}{200} \} \; \rightarrow \; \delta=\frac{1}{200}[\tex]<br />
<br />
I'm assuming that I made a mistake on that last bit as 1/200 seems an odd bound.<br />
<br />
Edit: I'm not sure why that last bit of latex isn't working. It should look like <a href="http://latex.codecogs.com/gif.latex?\delta=min&space;\{&space;\frac{1}{20},\frac{1}{200}&space;\}&space;\;&space;\rightarrow&space;\;&space;\delta=\frac{1}{200}" target="_blank" class="link link--external" rel="nofollow ugc noopener">http://latex.codecogs.com/gif.latex...ightarrow&space;\;&space;\delta=\frac{1}{200}</a>