Proving Positive Matrices through Conjugate Transposes

MathematicalPhysicist
Science Advisor
Gold Member
Messages
4,662
Reaction score
372
prove that a 2x2 complex matrix :
a b
c d

is positive iff A=A*, where A* is the conjugate transpose.

i know that an operator (and so i think it also applies to a matrix) is positive when it equals SS* for an operator (matrix) S.

and A* equals:
\\_
a c
_
b d

where the upper line stands for the conjugate.
but i don't know how to find an operator (matrix) which multiplied by its transpose conjugate equals A.
any pointers will be appreciated.
 
Last edited:
Physics news on Phys.org
What does it mean to say a matrix is positive? Do you mean positive definite? Are the two terms interchangeable?

Also, there's another definition that requires that all square sub-matrices have positive determinants - I don't know what this is called.
 
i know the definition of positive operator (which you can reflect on a matrix cause evey operator can be repesented by a matrix), the definitions is as follows:
an operator P is positive if it can be represneted by this equation P=SS* where S is an operator.
the defintion of definite positive requires that S will be non singular.
 
loop quantum gravity said:
i know the definition of positive operator (which you can reflect on a matrix cause evey operator can be repesented by a matrix), the definitions is as follows:
an operator P is positive if it can be represneted by this equation P=SS* where S is an operator.
So, if P=SS*, what is P* = ?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top