Proving probability inequality

Lily@pie
Messages
108
Reaction score
0

Homework Statement



Prove the following
a>0, X is a non-negative function

Ʃ_{n\in N} P(X>an)≥\frac{1}{a}(E[X]-a)

Ʃ_{n\in N} P(X>an)≤\frac{E[X]}{a}

The Attempt at a Solution



I know that
\sum_{n\in N} P(X>an)=\sum_{k \in N} kP((k+1)a≥X>ka)=\sum_{k \in N} E[k1_{[(k+1)a,ka)}(X)]
where 1_{[(k+1)a,ka)} is the indicator function.

I'm not sure how to preceed from here.

All I know is that for all ε>0, E[ε1_{[ε,∞)}(X)]≤E[X]
 
Last edited:
Physics news on Phys.org
The second is not true. Is there a factor 1/a missing on the right?
 
haruspex said:
The second is not true. Is there a factor 1/a missing on the right?

Sorry, my bad... I've edited it...
 
You can eliminate a by defining Y = X/a. Does that help?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top