matematikuvol
- 190
- 0
Homework Statement
Prove
\sqrt{\frac{2}{\pi}}\int^{\infty}_0x^{-\frac{1}{2}}\cos (xt)dx=t^{-\frac{1}{2}}
and use that to solve
\int^{\infty}_0\cos y^2dy
Is this good way to try to prove?
Homework Equations
The Attempt at a Solution
Homework Statement
Multiplicate both sides with \cos x'tdt and integrate from zero to \infty
\sqrt{\frac{2}{\pi}}\int^{\infty}_0dt\cos (x't)\int^{\infty}_0x^{-\frac{1}{2}}\cos (xt)dx=\int^{\infty}_0dt\cos (x't)t^{-\frac{1}{2}}=\sqrt{\frac{2}{\pi}}\int^{\infty}_0dxx^{-\frac{1}{2}}\int^{\infty}_0dt\cos (x't)\cos (xt)dx