- #1

Eponym

- 1

- 0

## Homework Statement

e1, e2 are vector parameters such that dot(e1, e2) = [tex] \delta_{ij} [/tex]

c is another vector parameter

r, s are real valued parameters

[tex]\beta[/tex] is a unit speed curve in E3

[tex]\gamma[/tex] is a parametrization of a circle

[tex]\gamma (s) = \overbar{c} + rcos (\frac{s}{r})\overbar{e_1} + rsin (\frac{s}{r})\overbar{e_2}[/tex]

Prove there is one and only one circle [tex]\gamma[/tex] that approximates [tex]\beta[/tex] near [tex]\beta (0)[/tex] such that

[tex] \gamma (0) = \beta (0), \gamma' (0) = \beta' (0), \gamma'' (0) = \beta'' (0) [/tex]

## Homework Equations

Given a curve in R3 [tex]\beta[/tex] with unit speed,

[tex] \beta' = T [/tex], where T is the tangent vector

[tex] \beta'' = \kappa N [/tex] where N is the normal vector

[tex] B = T \times N [/tex] where B is the binormal vector

## The Attempt at a Solution

I found the first and second derivatives of gamma and evaluated them at 0:

[tex]\gamma (0) = \overbar{c} + rcos (0)\overbar{e_1} + rsin (0)\overbar{e_2} = \overbar{c} + r \overbar{e_1}[/tex]

[tex]\gamma' (0) = -sin (\frac{0}{r})\overbar{e_1} + cos (\frac{0}{r})\overbar{e_2} = -sin (0)\overbar{e_1} + cos (0)\overbar{e_2} = \overbar{e_2}[/tex]

[tex]\gamma'' (0) = -\frac{1}{r} cos (0)\overbar{e_1} - \frac{1}{r} sin (0)\overbar{e_2} = -\frac{1}{r} \overbar{e_1} [/tex]

In addition, I have the relationship from the beginning of the problem between e1 and e2. I actually don't understand this - what does delta mean?

How do I prove that I will have a unique solution if I fix s?

Last edited: