Proving the B field in a wire only has theta component?

applestrudle
Messages
64
Reaction score
0

Homework Statement



Prove in a current carrying wire the magnetic field only has a theta component.

Homework Equations



∇ ⋅ B = 0 (dive of magnetic field zero, 2nd Maxwell Eq)

∇ x B = μ J (Ampere's Law, 4th Maxwell Eq)

Cylindrical symmetry means B field only dependent on r (distance from z axis) so that

B = Br(r)rhat + Bθ(r)θhat + Bz(r)zhat

The Attempt at a Solution



Divergence of Ampere's Law = 0 gives

- ∂B/∂r θhat + 1/r ∂/∂r(rBθ) zhat = 0

Not really sure where to go from there =/
 
Physics news on Phys.org
You'll end up having to solve a system of DEs.

Note: you can write the equations better in LaTeX... i.e. $$\vec B = B_r\hat r + B_\theta\hat\theta + B_\phi\hat\phi \\ -\frac{\partial B}{\partial r}\hat\theta + \frac{1}{r}\frac{\partial}{\partial r}\left(rB_\theta\right) \hat z = 0$$ ... If I understand you correctly that the last equation is supposed to be ##\nabla\cdot(\nabla\times\vec B) = 0## then that does not look right to me.
Please show your working.
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top