Proving the Inclusion of <a> in H: A Permutation Group Proof

iamalexalright
Messages
157
Reaction score
0

Homework Statement


Suppose G is a group, H < G (H is a subgroup of G), and a is in G.

Prove that a is in H iff <a> is a subset of H.


Homework Equations


<a> is the set generated by a (a,aa,aa^-1,etc)


The Attempt at a Solution


For some reason this seems too easy:

1. Suppose a is in H.
Since H is a group, a^-1 is in H.
Since H is a group aa, is in H (as is aa^-1, etc.)
Thus <a> is a subset of H.

2. Suppose <a> is a subset of H.
Obviously a is in H.

And this completes the proof... or am I missing something?
 
Physics news on Phys.org
shameful bump
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top